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Nonequilibrium Molecular Dynamics Calculation 
of the Shear Viscosity of Carbon Dioxide 

B. Y. Wang 2 and P. T. Cummings  2 

Nonequilibrium molecular dynamics calculations of the shear viscosity of super- 
critical carbon dioxide along the 313 K isotherm are reported. Three different 
intermolecular potential models of increasing complexity are considered: a 
spherically symmetric Lennard-Jones potential, a two-site Lennard-Jones 
potential, and a three-site potential which includes a quadrupole-quadrupole 
moment. Results for the three potentials are compared with experimental data. 
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1. I N T R O D U C T I O N  

In this paper, we begin a study of the transport  properties of supercritical 
fluids and mixtures using the tool of nonequilibrium molecular dynamics 
( N E M D )  [1].  The initial focus of the study is on the transport properties 
of supercritical, pure carbon dioxide, and this paper is devoted to an 
examination of the shear viscosity of carbon dioxide along the 313 K super- 
critical isotherm. 

N E M D  has recently emerged as one of the most efficient tools for 
calculating the transport  properties of molecular fluids. (For a review of 
NEMD,  see Evans and Morriss [1].  The most widely used alternative 
technique involves performing an equilibrium molecular dynamics and 
using the Green -Kubo  equations for the transport properties. This 
approach is exemplified by the paper by Hoheisel in this volume.) In 
general, N E M D  involves simulating a system at steady state away from 
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equilibrium, where the steady state is attained through the application of 
an external field. The ratio of the field-induced current to the field itself 
gives the transport coefficient of interest. The sllod algorithm [2], 
described in Section 2, is used in conjunction with shearing boundary 
conditions to apply an external strain field to a fluid and thus permit the 
calculation of the shear viscosity from the ratio of the pressure tensor to 
the strain rate. The Newtonian viscosity is obtained as the zero-strain rate 
extrapolation of the strain rate-dependent shear viscosity. 

Three intermolecular pair potential models for carbon dioxide are con- 
sidered. The simplest model for CO2 regards the molecule as spherically 
symmetric. The interaction potential is then a Lennard-Jones potential 
with parameters determined by fitting to the gas phase viscosity [3]. The 
second potential studied represents the next level of complexity: a two-site 
model in which the oxygen centers are explicitly modeled [4]. This model 
contains some of the elements of the shape of CO2 but does not include the 
electrostatic interaction due to the permanent quadrupole moment of CO2. 
The third potential is a three-site model (in which the centers of the oxygen 
and carbon atoms are explicitly represented) and the quadrupole- 
quadrupole interaction included [5]. The three potentials are described in 
detail in Section 2. The computational requirements for the NEMD simula- 
tion increase dramatically with the complexity of the potential model. The 
two-site model takes four times the computational time that the one-site 
(spherically symmetric) model requires; similarly, the three-site with 
quadrupole model takes 10 times longer than the one-site calculation. An 
appropriate question to ask is what complexity in pair potential is 
necessary to model supercritical transport properties effectively, and this is 
the motivation for considering three potential models of increasing com- 
plexity. For example, Simmons and Cummings [6] found that a five-site 
model for methane gave excellent results for the shear viscosity of super- 
critical methane at the state point they considered but that a one-site 
Lennard-Jones model yielded results within 12% of experiment at 1/25 of 
the computation cost. (Cummings [7] subsequently showed that the one- 
site model for methane was inferior to the full five-site model along the 
saturated liquid line.) 

In Section 3, the shear viscosity of CO 2 obtained by NEMD at three 
densities along the 313 K isotherm is compared with experiment. Section 3 
also contains conclusions drawn from the present study. 

2. N E M D  SIMULATION OF CARBON DIOXIDE 

In this section, we briefly report the equations of motion used and the 
details of the pair potentials employed. 
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The sllod algorithm [2, 1] for simple fluids is described elsewhere; for 
molecular fluids, Simmons and Cummings [6] describe the major features 
of the algorithm. The equations of motion for a simulated system of N 
molecules with streaming velocity if= (TY, 0, 0), where 7 is the strain rate, 
a r e  

d~/dt = fi' + F~ . V ff 
m (1) 

dp,/dt = P, - f , .  V a -  , %  

df~#dt = L 

s  
p fo~ = Li~/1 p, fi = x, y, z 

(2) 
fO p /qil~ / -qi3 -qi4 qi2 qi l \ /  ix\ 
(o p q,4 -q i3  - q , l  q,2|/ iy| 
f o p  d t~q i3]  2 ~  qil qi2 qi4 qi3]~ iz I 

\qi4/ \--qi2 q~l -q ,3  qi4/ \ 0 / 

In these equations, for molecule i, f,, fi~, 03,, L,,  ffl, and iPg represent the 
position of the center of mass, translational momentum, angular velocity, 
angular momentum, force on the center of mass, and torque in the 
laboratory frame. The principal (or molecular) frame quantities have 
superscript p. The matrix A t is the rotation matrix that converts the 
laboratory frame coordinates of molecule i to molecular frame coordinates 
and is a function of the orientation of the molecule. The qo, J = 1,..., 4 are 
the quaternions for representing the orientation of molecule i in such a way 
that the equations of motion are singularity-free [8]. The parameter 2 is 
used to constrain the translational motion so that the translational kinetic 
energy is fixed at the required temperature. The functional form of the term 
involving 2 follows from the application of Gauss's principle of least 
constraint [9] where the isokinetic constraint is 

1 @ 2 3 
--2m ,-Jz" fi~ - -~ N k n T = O  (3) 

where kB is Boltzmann's constant and T is the absolute temperature. This 
leads to the following equation for 2: 

2---- 2 ( f i  , " L - -  f i  , f i  , ~ V ff fi ~ (4) 
i = l  i 1 

840/' 0/'5-2 
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where �9 indicates the full contraction of two second-order tensors and N is 
the number of molecules in the simulation cell. For the algorithm to be 
homogeneous, the boundary conditions must be consistent with the equa- 
tions of motion. Thus, we employ the Lees-Edwards [10] "sliding brick" 
boundary conditions The fourth-order Gear's predictor corrector method 
described in detail by Evans and Morriss [ 1 ] is used to solve the equations 
of motion. 

The pressure tensor P is calculated from the expression 

N N 

PV=m ~ (d,-d)(ff,--ff)+ ~ f,P, (5) 
i = l  i ~ l  

where V is the volume of the system and di = :jm is the intrinsic velocity 
of molecule i. The strain rate-dependent shear viscosity q is obtained from 
the constitutive relation [ 11 ], 

P~xy = -2t/(Vff)~ (6) 

where A ~ denotes the symmetric, traceless part of the tensor A. The strain 
rate-dependent shear viscosity, hydrostatic pressure p = (1/3) Tr(P), and 
configurational internal energy u ~~ are fitted to the asymptotic expressions 
[12] 

q = r/0- rh71/2 (7) 

P = Po + Pl]) 3/2 (8) 

Hconf = UO + b/1 ])3/2 (9) 

The quantities with zero subscript are the zero-strain rate quantities, so 
that 1/o is the Newtonian viscosity. 

The general form of the intermolecular potential is given by 

u(12)= ~ ~ u~(r~)+UQQ(12) (10) 
a = l  f l = l  

Table I. Intermolecular Potentials for Carbon Dioxide 

Model n (e/k) (K) a (~,) O (D~) l (/~) 

Spherical [3] 12 190.0 3.996 0.0 0.0 
Two-site [4] 9 182.0 3,331 0.0 2.32 
Three-site [5] 12 29.0(C-C) 3.126(C-C) -3.85 2.32 

83.1(0-0) 3.383(0-0) 
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Table II. N E M D  Results  for the L e n n a r d - J o n e s  Simple-Flu id  Mode l  of C O  2 

Along  the 313 K I so the rm 

933 

p ( k g .  m -3)  ?* Time steps p ( a tm)  uc~ T) q (cp) 

199.8 1.44 20,000 89.72 - 0 . 6 9 4 ,  0.0120 
1.0 20,000 91.16 - 0 . 6 8 9  0.0148 

0.64 30,000 89.85 - 0.671 0.0170 

0.36 30,000 88.95 - 0 . 6 8 2  0.0180 

0.16 80,000 92.35 - 0 . 6 6 1  0.0197 

840.8 1.44 20,000 1347.5 - 2.495 0.114 

1.0 20,000 1248.8 - 2.530 0.116 

0.64 30,000 1215.2 - 2 . 5 4 5  0.123 

0.36 30,000 1202.9 - 2.552 0.115 

0.16 80,000 1176.6 - 2 . 5 6 1  0.105 

992.1 1.44 20,000 2947.2 - 2.750 0.184 

1.0 20,000 2780.8 - 2 . 8 0 2  0.196 

0.64 30,000 2695.7 - 2 . 8 3 2  0.199 

0.36 30,000 2661.0 - 2 . 8 4 6  0.220 

0.16 40,000 2654.3 - 2.850 0.226 

Table I lL  N E M D  Results  for the Two-Site  Mode l  of C O  2 

Along the 313 K I so the rm 

p ( k g .  m 3) y* Time steps p (a tm)  uC~ T) ~l (cp) 

199.8 1.44 20,000 45.2 - 5.721 0.007 

1.0 20,000 24.4 - 3.839 0.006 

0.64 20,000 25.5 - 2.368 0.012 

0.36 20,000 24.5 - 2.303 0.013 

0.16 20,000 37.8 - 1.639 0.019 

840.8 1.44 10,000 - 366.2 - 4.660 0.071 

1.0 20,000 - 260.8 -- 4.679 0.065 

0.64 20,000 - 320.1 - 4.711 0.069 

0.36 20,000 - 309.7 - 4 . 7 0 7  0.068 

0.16 20,000 -- 286.0 - 4.807 0.071 

992. i 1.44 20,000 - 172.9 - 5.383 0.103 
1.0 20,000 - 295.5 - 5.433 0.101 

0.64 20,000 - 295.4 - 5.426 0.104 
0.36 20,000 - 313.4 - 5.467 0.098 
0.16 20,000 - 305.3 - 5.443 0.103 
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where m is the number of sites in the molecule, r~  is the distance between 
site c~ and site /~ in distinct molecules, UQQ(12) is the quadrupole- 
quadrupole interaction between molecule centers and the site-site inter- 
action rJ u~(r) is a Lennard-Jones potential of the form 

,11  u~(r) (n-6) 

In this equation, ~ is the well depth of the potential, O-~ is the zero of the 
energy, and n is the power law for the repulsive energy. The distance 
between the oxygen atoms in the two- and three-site models is denoted by 
/. The three-site model has a point quadrupole moment at the molecular 
center of mass which coincides with the center of the carbon atom. The 
cross-interaction parameters eco and O-co are obtain by the usual Berthelot 
combining rules 

~CO = (~OO~CC) 1/2' O'CO = 1(O-OO + O-CO) (12) 

The parameters for the models are listed in Table I. 

3. R E S U L T S  

In Tables II, III, and IV, we report the pressure, configurational inter- 
nal energy, and viscosity for the one-site, two-site, and three-site models of 

Table IV. N E M D  Results for the Three-Site Model of C O  2 

Along the 313 K Isotherm 

p ( k g - m  3) 7* Time steps p (atm) uC~ r / ( c p )  

199.8 1.44 20,000 81.0 - 1.030 0.0093 

1.0 20,000 73.8 - 1.188 0.0105 

0.64 20,000 78.7 - 0.939 0.0134 

0.36 20,000 79.7 - 0.945 0.0188 

0.16 20,000 82.3 - 0 . 9 2 2  0 .0190 

840.8 1.44 20,000 468.6 - 3.240 0.0714 

1.0 20,000 402.9 - 3.236 0.0752 

0.64 20,000 380.6 - 3.298 0.0733 

0.36 20,000 349.5 - 3.296 0.0739 

0.16 20,000 399.3 - 3.303 0.0754 

992.1 1.44 20,000 954.6 - 3.826 0.107 

1.0 20,000 817.4 - 3.903 0.111 

0.64 20,000 736.3 - 3.906 0.116 
0.36 20,000 745.6 - 3.915 0.123 

0.16 20,000 726.8 - 3.937 0.121 
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CO2, respectively. The simulations of the one-site model were performed 
on systems of t08 molecules with time step 1.32 x 10 14 s; the simulations 
of the two- and three-site models were performed on systems of 
125molecules with time step At= 10-~Ss for five reduced strain rates 
7* = 2a(m/e) v2= 0.16, 0.36, 0.64, 1.0, and 1.44. The spherical cutoff of the 
intermolecular potential is 12/~ for the one-site simulations and 10/~ for 
the two-site and three-site models. The longest computations (three-site 
model and some two-site) were performed on a CSPI 6420 64-bit word 
array processor (attached to a Prime 850 located in the Center for Com- 
puter-Aided Engineering at the University of Virginia) and on a Cyber 
180/855 (located in the Academic Computing Center at the University of 
Virginia). The shorter simulations (one-site and some two-site) were 
performed on the Prime 850 noted above and on two Sun 3 workstations. 

The strain rate-dependent pressure, shear viscosity, and configura- 
tional internal energy were least squares fitted to the asymptotic formulae 
given in Eqs. (7) (9). Figures 1-3 show the strain rate-dependent viscosity 
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Fig. 1. The viscosity r/for the one-site model of CO2 at densities 
199.8, 840.8, and 992.1 k g - m  ~ along the 313 K isotherm as a 
function of 7"1/2. The symbols are simulation results (to which the 
straight lines are least-squares fits) and the arrows indicate the 
experimental data. 
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Fig. 2. The viscosity t# for the two-si te model  of C O  2 at  densit ies 
199.8, 840.8, and  992.1 k g . m  -3 a long  the 313 K i so therm as a 

function of ?,1/2. The symbols ,  lines, and  ar rows  have the same 
significance as in Fig. 1. 
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Fig. 3. The viscosi ty r# for the three-site mode l  of C O  2 at  den- 
sities 199.8, 840.8, and  992.1 kg  . m  -3 a long  the 313 K i so therm as 

a funct ion of ? .1/2. The symbols ,  lines, and  ar rows  have  the same 
significance as in Fig. 1. 
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Fig. 4. The pressure p for the three-site model of CO 2 at den- 
sities 199.8, 840.8, and 992.1 kg .m -3 along the 313 K isotherm as 
a function of ?,3/2. The symbols, lines, and arrows have the same 
significance as in Fig. 1. 

for the each of  the potential models along the 313 K isotherm. The 
viscosity follows the asymptotic relation (7) quite well. The strain rate- 
dependent pressure and configurational internal energy for the three-site 
model  are shown in Figs. 4 and 5; again, the asymptotic formulae evidently 
fit the simulation results well. 

4. C O N C L U S I O N S  

The N E M D  results for the three-site model  are in very good  agree- 
ment with the experimental results on the shear viscosity and in reasonable 
agreement with the experimental pressures. The simple fluid model  results 
are in good  agreement at the lowest density (as is expected since the 
parameters in the potential are fitted to the zero density viscosity) but 
overestimate the viscosity and pressure as the density increases. The two- 
site model  yields reasonable results for the viscosity, but the pressures are 



938 Wang and Cummings 

~ I 
p = 1 9 9 . 8  k g . m  -3 

-2 

U/NkB T - 3 

-4 

0=840.8 kg.m -3 
- - & ,  . . . . .  A . . . . . . . . . . .  A . . . . . . . . . . . . . . .  A 

p = 9 9 2 . 1  k g . m  -3 . . . . . . . . . . . . . . . . . . . .  [] 
.~.....,[2- .. . . . . . . . . . .  [~- . . . . . . . . . . . . . . . . . . . . .  [3" . . . . . . . . . . . . .  

[ I I 
0 0 . 5  1 1 .5  2 

~/'3/2 

Fig. 5. The configurational internal energy u c~ for the three-site 

model of CO 2 at densities 199.8, 840.8, and 992.1 kg .  m -3 along the 

313 K isotherm as a function of 7 *3/a. The symbols and lines have the 

same significance as in Fig. 1. 

Table V. Comparison Between Pressure and Shear Viscosity Calculated via 

N E M D  and Experimental Data 1-13] 

p ( k g . m  3) Model PNZMD Pexp r/NEMD qex0 uc~ T) 

199.8 One-site 90.8 69.1 0.024 0.0210 -0 .668 
Two-site - -  0.024 - 1.485 

Three-site 79.8 0.025 - 0.937 

840.8 One-site 1170 197.4 0.107 0.0792 -2 .563 

Two-site - -  0.070 - 4.760 
Three-site 361.5 0.077 -3 .306  

992.1 One-site 2622 493.5 0.249 0.118 -2 .859 
Two-site - -  0.100 - 5.459 

Three-site 699.8 0.132 -3 .939 
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negative. [-In fact, the negative pressures fail to follow the 73/2 asymptotic 
formula and so no zero-strain rate extrapolation of these pressures is 
provided in Table V.] This indicates that the two-site model may be in the 
two phase region at the temperatures and densities studied, which implies 
that the two-site model fluid in this case is not supercritical at 313 K. 

In Section 1, a question about the complexity of the pair potential 
required in order to give accurate transport  properties was raised. The 
results presented in this paper suggest that using the three-site model is 
capable of predicting accurate shear viscosities for supercritical carbon 
dioxide but that the other two, simpler models are not sufficiently accurate 
at high densities. It is clear that shape is playing an important role in deter- 
mining the shear viscosity, since only the models with a nonspherical shape 
yield reasonable results for t/ over all three densities. The pressure, which 
in general is very sensitive to the attractive interactions, is best predicted 
when the electrostatic quadrupole-quadrupole is included. 

The next steps in our study of supercritical fluids will include evaluating 
the three-site potential for diffusivity and thermal conductivity and using 
N E M D  to calculate supercritical mixtures with carbon dioxide as the 
solvent. 
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